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Here, we study the computational complexity of the Fekete point problem. Namely, we
give an exhaustive description of the main properties of an algorithm for the minimization
of the logarithmic potential energy on the 2-sphere, and we characterize the probability
distribution of the cost of the different minima. In particular, we show that a local
minimum can be found with an average cost of about OðN2:8Þ.
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1. Introduction

Many mathematical problems with applications in Physics, Numerical Methods and Complexity Theory are posed in
terms of the minimization of a certain potential energy functional associated with a system of point particles under general
constraints. Usually, the involved functionals depend on the relative distances between pairs of particles. For instance, a var-
iation of the Thomson problem posed as part of the development of the plum pudding model of the atom consists of deter-
mining the minimum energy configuration of N classical electrons on the surface of the 2-sphere. The electrons repel one
another with a force given by Coulomb’s law. Another classical problem is that of maximizing the product of the relative
distances between N points on the 2-sphere, which is equivalent to minimizing their logarithmic potential energy. Finding
an efficient algorithm for the search of good estimations of such optimal points is the center of S. Smale’s 7th ‘‘Mathematical
problem for the 21st century”. This problem is closely related to the efficient resolution of polynomial equation systems, and
hence also with the resolution of general nonlinear equation systems. In Molecular Mechanics, each atom is regarded as a
weighted point particle, and the stable molecular geometries are local minimizers of a potential energy functional depending
on the relative distances between the atoms and other geometric parameters. In Dynamic Systems, the so-called planar cen-
tral configurations are local minimizers of a generalized potential energy functional involving the Newtonian potential en-
ergy and the distances from each point mass to the mass center of the system. Different potential energy functionals have
also been used in numerical integration, polynomial interpolation, mesh generation and also in computer graphics to distrib-
ute points on an implicit surface as an initial step for its visualization.

The literature on all these interesting topics is vast, and the authors use different notations and terminologies. Originally,
the name Fekete points was related to the answer provided by M. Fekete to an algebraic problem posed by I. Schur in 1918,
see [9]. Further works in Potential Theory showed deep relations of the Fekete points with the concept of capacity, and this
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name became widely used in different contexts. We call the Nth order Fekete points the N-tuples xN ¼ fx1; . . . ; xNg; xi 2 Rd,
that minimize under general constraints any potential energy functional IN involving the relative Euclidean distances be-
tween N points, and we call the Fekete problem that of determining these N-tuples. This framework includes potential energy
functionals of the form
INðxÞ ¼
X

16i<j6N

Kðxi; xjÞ;
where x ¼ fx1; . . . ; xNg; xi 2 Rd, and the kernel K is a function of the Euclidean distance between xi and xj; jxi � xjj. Some inter-
esting kernels are the logarithmic kernel, � log jxi � xjj, and Riesz’s kernels, defined by jxi � xjj�s, with s > 0. The limit case
s! 0 recovers the logarithmic kernel, whereas the other limit case s!1 leads to the so-called best-packing problem or
Tammes problem. The particular case s ¼ d� 2 plays a specially important role. The corresponding kernel is known as
the Newtonian kernel and its potential energy functional is called the electrostatic potential energy.

Several results have been obtained regarding the asymptotic behavior of the Fekete points in different areas. In particular,
recent works show that N point configurations that minimize Riesz’s potential energy on a general rectifiable ðd� 1Þ-man-
ifold K are asymptotically uniformly distributed (with N !1) with respect to ðd� 1Þ-dimensional Hausdorff measure on K
when s P d� 1, see [14,15]. The good separation properties of the Fekete points have been deeply analyzed in the context of
numerical integration, where valuable results have been produced specially for the case of numerical integration on spheres,
see, for instance, [4–7] and the references therein. The problem of the approximation of potentials and electrostatic fields
generated by continuum distributions of charges on conductor bodies by means of Fekete points has also been studied,
see [18].

Although the available theoretical results on the Fekete problem are of great interest and help us to understand some of
the main features of the problem, often the information that they provide is rather vague from the point of view of the appli-
cations. Optimal point configurations in the interval and in the circle have been obtained, but only a handful of solutions for
low values of N are known even in the simplest three-dimensional case of the 2-sphere. Thus, the use of numerical methods
becomes necessary in practice.

The Fekete problem is a prototype of a highly nonlinear constrained optimization problem. One of its main characteristics
is the massive multiextremality. In general, many local minimizers exist and some of them are fairly close (by their energy
values) to the ‘‘true” global solutions. In fact, the evoked problems are well suited to test global optimization routines, see
[17]. Thomson’s problem requires a global solution and remains largely unsolved after almost 100 years. In [25], P.M.
Pardalos stated the maximization of the product of relative distances on the 2-sphere as an open global optimization prob-
lem. Certificates of global optimality are not available; the usual first-order and second-order optimality conditions are easy
to derive but of little value. Anyway, in many practical applications not only the global solutions but the local ones, approx-
imated with a required accuracy degree depending on the context, are also demanded.

Smale’s 7th problem gives a new dimension to the algorithmic and numerical treatment of the problem and focuses on its
computational complexity, see [29,30]. A wide variety of optimization algorithms have been used to tackle the search of local
and global minima for different potential energies. These algorithms can be divided into two categories: Classic Optimization
Algorithms, basically Gradient and Conjugate Gradient methods, Relaxation methods and Newton and quasi-Newton meth-
ods; and Combinatorial Optimization Algorithms, for instance, Simulated Annealing, Tabu Search and Genetic algorithms.
The essential difference is that the algorithms in the first family are fully deterministic, whereas randomness is a fundamen-
tal ingredient for the second group.

Classic optimization algorithms use analytic tools to construct a sequence of approximations tending to an optimal solu-
tion in a deterministic way. This iterative process starts in general from a given first approximation that leads univocally to a
solution that in general is only a local minimum. So, global minimization strategies typically include multistart procedures
where the random component can be introduced.

Combinatorial optimization methods were developed mainly for combinatorial or discrete optimization problems. Some
of these problems are NP-complete, hence it is very unlikely that an efficient algorithm exists. However, these algorithms can
be applied to get relatively good solutions in a reasonable time. Since the dawn of these algorithms they have been applied to
continuous problems, too, with varying success.

For many versions of the Fekete problem classic algorithms or their combinations have been typically used. In the 1990s,
intensive computations for the basic problems of the Newtonian and the logarithmic energy as well as the best-packing
problem on the 2-sphere started to be performed. Many different optimization algorithms were proved by different authors.
Classic algorithms usually require the elimination of the problem constraints by means of some parametrization, namely
spherical or stereographic coordinates. Combinatorial algorithms can be directly applied by combining them with some pro-
jection technique to make the particles return to the surface.

K.J. Nurmela is particularly interested in the best-packing problem. This problem can be viewed as the limit of Riesz’s en-
ergy problems, so this author also focuses on them. In [21], one can find a useful description of a great variety of different
algorithms and combinations, with some comments on their practical implementation, their advantages and their limita-
tions when they are applied to the Fekete problem. Not only the 2-sphere is considered by this author, but he also uses dif-
ferent optimization approaches to deal with the best-packing and covering problems in flat domains such as the circle, the
triangle and the square; see, for instance, [22–24]. In [31], one can find tables in which different authors gather, among other
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things, best energy values for the Lennard-Jones potential on the 2-sphere for N up to 75 and best sphere packings in 3, 4 and
5 dimensions for N up to 130.

We can also mention the Dissertation of Y. Zhou, [36], where in particular energy values are shown for the logarithmic
and the Newtonian kernels in the 2-sphere for N up to 200. In general, all these results were obtained by proving and com-
bining classical methods. T. Erber and G.M. Hockney used a relaxation algorithm for the Newtonian problem on the 2-sphere,
and their computer trials indicated that in the range 70 6 N 6 112 the number of distinct local minima associated with each
value of N grows exponentially with N, see [8]. This exponential growth has been confirmed by several other authors. We
must remark the work carried out by R. Womersley and by M.J. Bowick. In [34], Womersley gives energy values for the New-
tonian kernel in the 2-sphere for N ¼ ðmþ 1Þ2 with m up to 80, so the biggest case studied has N ¼ 6561. He used a com-
bination of local and global large-scale optimization techniques running on a cluster for the problem in the spherical
coordinate parametric space. Using the same procedures, Womersley has also obtained configurations corresponding to dif-
ferent kernels on a torus, see [35]. In [3], Bowick describes many classical and combinatorial algorithms that he has used to
tackle the Fekete problem. In particular, he shows energy values and configurations for the Newtonian energy for many N
values up to 5000 on the 2-sphere. He also considers other energies and the case of the torus.

Genetic algorithms have rarely been applied to physical systems. Mating, mutation and crossover in these systems are
often difficult to define, and determining an organism’s fitness is often computationally intensive. These algorithms can
be very effective as global optimization methods, but usually they are extremely slow. In [20], J.M. Morris et al. use a genetic
algorithm for the Fekete problem. They combine this algorithm with a conjugate gradient technique. The authors provide
values for the Newtonian energy on the 2-sphere up to N ¼ 200. In the recent work [12], L. Giomi and Bowick apply a genetic
algorithm to minimize the Newtonian potential energy of N points, N up to 200, on a paraboloidal surface with boundary.
These authors emphasize the dramatic slowing down of the algorithm when applied to large-scale optimization.

An alternative formulation of the Fekete problem is based on the mechanical interpretation of the behavior of a system of
particles that interact according to forces derived from a potential energy functional. If no dissipative forces are introduced,
the system moves indefinitely while maintaining its total energy constant. However, if an adhesion force is implied on the
particles, the total energy diminishes with time and finally a static stable position is found. The equivalence between these
static stable equilibrium positions and minimum energy configurations constitutes the key of this approach. From this new
perspective, minimum potential energy configurations are obtained by integrating the movement equations of the particle
system with additional dissipative terms under the constraints of the corresponding optimization problem.

W.J.H. Stortelder et al., see [32], consider the complete Lagrangian movement equations of a system of point particles
interacting according to the forces derived from the logarithmic potential energy and constrained to the 2-sphere. They
include the adhesion forces necessary to reach a final equilibrium position. To solve the system, the RADAU5 code by
E. Hairer and G. Eanner, see [13], was used. The work [32] contains the results of a comparison between this algorithm
and other more classical optimization algorithms when they search for optimal configurations of N up to 150 particles.
The authors show that for the studied cases the ODE approach is competitive, but they emphasize that memory limitations
will become a serious drawback for this method in the case of increasing N due to the storage required by RADAU5.

Some other authors have also applied the mechanical analogy to deal with the Fekete problem. We can mention [19],
where R. van Liere et al. use symplectic integrators for the problem of logarithmic energy on the 2-sphere (symplectic meth-
ods exploit the special structure of the problem and retain certain physical properties of the dynamic system, see [27]). In
[16], J.S. Hesthaven uses a 7(6) embedded Nyström–Runge–Kutta scheme with error control to compute interpolation points
in the triangle. In both cases, only small systems are considered. Several other authors have also used simplified approaches
inspired in a mechanical conception of the problem to design mesh generators and to sample and render implicitly defined
surfaces, see, for instance, [26,28,33] and the references therein. In general the rigorous definition of equilibrium is lost under
these simplifications, but the developed algorithms are usually efficient and versatile from the point of view of their
applications.

Here, we summarize the main conclusions that can be derived from the available information regarding the problem of
the numerical minimization of the logarithmic and Riesz’s energies under general constraints:

– Two approaches have been used to deal with the different variants of the Fekete problem: optimization algorithms and
ODE integration algorithms. The latter approach has mainly been used in contexts such as mesh generation and computer
aided design, where usually only reasonably well-distributed points are needed, and the accurate resolution of the opti-
mization problem is not relevant.

– Few authors have considered the optimization problem out of the 2-sphere (apart from the Computer Graphics context).
– For the case of the 2-sphere, many authors have carried out rather exhaustive searches for global solutions for the loga-

rithmic and Newtonian potential energies with N 6 200. Their strategies cover practically the whole spectrum of available
optimization methods, and in many cases combinations of them have been used. Moreover, some authors have applied
ODE integration algorithms for the Fekete problem obtaining competitive results.

– For N > 200, only very partial results are available even in the case of the 2-sphere. Sometimes symmetries are used to
reduce the number of variables and to obtain some information about the asymptotical behavior of the problem.

– No general results about convergence, stability, robustness and the computational cost of the employed algorithms have
been published.
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This paper is the first in a series of which we made a systematic study of the computational complexity of the Fekete
problem. Here, we focus almost exclusively in the case of the logarithmic energy on the 2-sphere. In particular, we present
a statistical analysis based on the extensive numerical experiments of the computational cost of an approximate local min-
imum for this case. The robustness, convergence and stability properties of the employed algorithm are identified and cor-
roborated by the results of a massive computation program.

2. Background

Our first works on the numerical estimation of Fekete points focused on obtaining an efficient and robust algorithm for
the identification of local minima of a potential energy restricted to a general regular surface. Then, we developed additional
techniques that allowed us to apply the mentioned algorithm to a wide variety of objects, which we call W-compact sets
while keeping their good properties. The W-compact sets are essentially the finite union of boundaries of open sets, surfaces
with boundary and curves with boundary and they include, in particular, non-smooth surfaces. In [1], we gave a detailed
description of the technical aspects of our approach. Nevertheless, we consider it convenient to briefly describe the algo-
rithm, which we call the Forces Method, for the sake of completeness.

The basic structure of the Forces Method is classical. It can be viewed as a relaxation gradient-like descent algorithm in
such a way that each step consists of the advance direction obtained and the step size in a deterministic way. This leads to
the scheme
x̂kþ1 ¼ xk þ kk wk;
where xk;wk and kk are the position, the advance direction and the step size at the kth step, respectively, and x̂kþ1 is the non-
corrected position at the ðkþ 1Þth step. Position xkþ1 is obtained by projecting each x̂kþ1

i to the surface S. With regard to the
advance direction, let us start by observing that the potential energy of a system of N unitary particles xi 2 R3; i ¼ 1; . . . ;N, is
given by IN ¼ 1

2

PN
i¼1Vi, where Vi ¼

PN
j¼1
j–i
Kðxi; xjÞ is the potential created at xi by all the other particles. If we fix the position of

the N � 1 particles fxj 2 S : j ¼ 1; . . . ;N; j–ig, then Vi is a function of xi and the opposite of its gradient, which we denote by
Fi ¼ �rVi 2 Txi

ðR3Þ, represents the repulsive force acting on the ith particle due to the existence of the rest. If the particles lie
on a regular surface S � R3, and FT

i denotes the tangential component to S of the force Fi at xi, then we choose

w ¼ ðw1; . . . ;wNÞ as the advance direction, where wi ¼
FT

i
jFi j

. Moreover, we call the disequilibrium degree of the ith particle
the scalar jwij. The magnitude of the step size is obtained from the expression
kk ¼ a min
16i<j6N

fjxk
i � xk

j jg;
where the coefficient a is a positive scalar that we keep constant throughout the descent process (it does not depend on k),
and the minimum distance between particles allows us to adapt the step size to the difficulty of the different configurations
that appear during the calculation. From a mechanical point of view, we can see the descent scheme as the integration
scheme of the autonomous system of ODE x0 ¼ wðxÞ, or, equivalently, the system x0 ¼ uðxÞwðxÞ, where
uðxÞ ¼min16i<j6Nfjxi � xjjg, by means of Euler’s forward method. The variable factor uðxkÞ reduces the step size when there
exist very close particles to prevent them from ‘‘running helter-skelter”, breaking the continuity of the movement, and it
increases the step size when the relative distances grow in benefit of the convergence ratio. The magnitude a jwij represents
the fraction of the minimum distance between particles that the ith particle advances at each step.

For the study of the convergence of the algorithm, we use the maximum disequilibrium degree, wmax ¼ max16i6Njwij, as a
measure of the error at each step. We call the convergence curve the graph that displays the evolution of the error wmax with
the step number, nstep. Fig. 1 corresponds to the application of the algorithm on the 2-sphere with the logarithmic kernel for
N ¼ 1000 and a ¼ 17:234, and it shows its general behavior. The starting configuration (left) was generated according to a
uniform probability density on the 2-sphere. In the center, we can see the configuration corresponding to step 8000
ðnstep ¼ 8000Þ. The corresponding convergence curve (right) attains a final linear convergence ratio after a highly nonlinear
phase. In this case, xkþ1

i ¼ x̂kþ1
i

jx̂kþ1
i
j ; i ¼ 1; . . . ;N:
Fig. 1. Initial and final configurations of N ¼ 1000 particles on the 2-sphere and the corresponding convergence curve.



Fig. 2. N ¼ 500 particles on an apple with the logarithmic kernel, N ¼ 2000 particles on a W-compact set obtained by combining different dimension
objects with the Newtonian kernel and N ¼ 10; 000 particles on the Kelvin Polyhedron with Riesz’s kernel for s ¼ 2.
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To apply the above-mentioned algorithm in a non-regular surface S, it is necessary to design a strategy for the generation
of good starting configurations, because if the initial position is not good enough, the singularities of the surface could cause
the particles to become trapped at unsatisfactory minima or stationary points. To solve this, we use a sequence of acceptable
equilibrium configurations on a small number of approximating smooth surfaces. In [1], we described the W-compact sets
that admit an approximation by regular surfaces, as well as a technique used in Computer Graphics for the construction of
approximating regular surfaces by means of the composition of implicit equations. Moreover, we analyzed the potential en-
ergy and its gradient restricted to a W-compact set, which is essential for determining the disequilibrium degrees of particles
at non-regular points. We also gave some additional details to carry out the implementation of our procedure, whose ver-
satility and robustness we would like to mention here. Fig. 2 shows some equilibrium configurations for different kernels and
W-compact sets.

3. The Forces Method

In this section, we focus on the case of the logarithmic kernel in the 2-sphere, which establishes an interesting framework
to carry out a profuse study of the properties of our algorithm. So, throughout this section S stands for the 2-sphere and INðxÞ
is the logarithmic potential energy of an N point set x ¼ fx1; . . . ; xNg.

The rest of this section is organized as follows: after some notation, we analyze the convergence properties of our descent
algorithm as well as the influence of the random starting configurations in the accessibility to the different local minima and
in the computational cost. After that, we present the results of a statistical analysis carried out to characterize the compu-
tational cost of identifying a local minimum.

3.1. Terminology and notation

We have already introduced the forces Fi, their tangential components FT
i , the advance direction w ¼ ðw1; . . . ;wNÞ, where

wi ¼
FT

i
jFi j

, the disequilibrium degree of a particle, jwij, and the error at a step, wmax ¼max16i6Njwij. We have also defined the
convergence curve as the graph of wmax as a function of the step number, n step. A typical convergence curve contains a first
highly nonlinear phase and a final linear phase or linear tendency; see Fig. 1.

After generating the initial position x0 of N particles on S and fixing the magnitude of the coefficient a, the Forces Method
can be applied recursively. The algorithm stops when w max reaches a certain prescribed threshold value e > 0. We call this e-
convergence. This definition of convergence is useful in practice, but it is not entirely satisfactory from a more theoretical
point of view. We can introduce a new definition of convergence based on the concept of approximate local minimum, which
is analogous to the concept of approximate zero of a system of polynomial equations proposed by M. Shub and Smale; see,
for instance, [30]. Thus, we say that the algorithm has converged when it has found an approximate local minimum; that is,
when the current position xk is close to a local minimum in such a way that Newton’s algorithm converges quadratically to
this local minimum from xk. This definition of convergence is associated to the size of the local influence zone of the minima
and does not depend on e.

In general, only when the final linear tendency of the convergence curve is reached can it be assumed that we have an
approximate local minimum. Nevertheless, in practice it is not easy to accurately determine the beginning of the final linear
tendency, and it is impractical to determine the precise step from which Newton’s algorithm converges quadratically. To
eliminate this ambiguity, we define a third kind of convergence: if we consider a long enough convergence curve; that is,
with e small enough, the step corresponding to its last maximum can be determined without ambiguity and it precedes
the linear tendency. We call the last maximum in a convergence curve the non-return point. The non-return point anticipates
the entrance to the attraction zone of a minimum. We say that the Forces Method has nr-converged when the non-return
point has been attained. Obviously, the nr-convergence cannot be detected throughout the calculation and cannot be used
in practice to stop the descent process. However, if we lead the algorithm to e-convergence with e small enough, then the
non-return point is the last registered maximum in the convergence curve. We use the nr-convergence as an indirect way
of measuring the computational cost of identifying an approximate local minimum.
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The concept of nr-convergence characterizes different features of the Fekete problem and it is not exclusively related to
the size of the influence area of the local minima. We consider that this notion of convergence is more appropriate and useful
than that associated to the quadratic convergence of Newton’s method in the Fekete point problem context. We use the term
approximate local minimum both in the sense introduced by Shub and Smale and to denote the configurations xk that the
Forces Method provides after the non-return point is attained.

On the other hand, if the starting positions x0 are randomly generated, then the number of steps needed to converge in a
run of the Forces Method is a random variable. Specifically, we define the random variables X, the number of steps for nr-
convergence in a run, and Y, the number of steps for e-convergence in a run. For simplicity of notation, we have not used
indices in the definitions of the variables X;Y . In each case, the values for N and e will be clear. For a generic random variable
Z with probability density function fZ and probability distribution function FZ , we call Mk

Z ¼ E½Zk�; k 2 N, the kth order mo-

ment of Z;lZ ¼ M1
Z the mean of Z; ðMk

ZÞ
0 ¼ E½ðZ � lZÞ

k� the kth order centered moment of Z and rZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

ZÞ
0

q
the standard

deviation of Z. Moreover, we call zi; i ¼ 1; . . . ;nsp, the sample data obtained in an experiment for Z;mk
z ¼ 1

n sp

Pnsp
i¼1zk

i the sample
moments of fzig;�z ¼ m1

z the sample mean of fzig; ðmk
zÞ
0 ¼ 1

nsp

Pn sp

i¼1 ðzi � �zÞk the sample centered moments of fzig and
SZ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

z Þ
0

q
the sample standard deviation of fzig.

3.2. The coefficient a

All the components of our descent algorithm except the coefficient a can be determined at each step from the position of
the particles. From the point of view of the cost of the algorithm at each step, it is clear that the optimal choice consists of
keeping this coefficient constant throughout the descent process, since then its cost at each step is null. This reasoning could
seem excessively simplistic. Certainly, we should consider some crucial issues such as the total computational cost of the
process (that is, the number of steps needed to converge), the possibility of divergence or the influence of the starting con-
figuration and the value of N. In this section, we present the results of a series of numerical experiments designed to deter-
mine the behavior of the algorithm when the coefficient a is kept constant.

3.2.1. Experiment 1
Taking into account the enormous growth with N of the number of local minima of the Fekete problem, we start the study

by considering the case N ¼ 87, which still has a relatively small amount of minima and provides us with substantial infor-
mation for each minimum.

In the first experiment, we use two different starting configurations: one generated according to a uniform probability
density on the whole 2-sphere, and the other generated according to a uniform probability density on a spherical cap of area
p � 10�6. In the sequel, we call uniform starting configurations the ones randomly generated from a uniform probability den-
sity on the whole 2-sphere, and delta starting configurations the ones randomly generated according to a uniform probabil-
ity density on a spherical cap of area p � 10�6.

The experiment consisted of running the algorithm until attaining e-convergence (e ¼ 10�7) from both starting positions
taking 2000 different values for the coefficient a in each case. In each run, the value of a remained constant from the starting
configuration to the e-convergence position. Fig. 3 shows the evolution with a of the number of steps necessary to attain e-
convergence (e ¼ 10�7) from the uniform starting configuration (up) and from the delta starting configuration (down).

Fig. 3 shows that there exist an important range of values of a that guarantee the convergence to a minimum. Moreover, it
can be observed that the critical value of a from which the algorithm diverges, acrit, is practically the same for both initial
configurations, which is especially remarkable. Moreover, in both cases the evolution with a of the number of steps neces-
sary to converge is qualitatively and quantitatively similar and the smallest calculation times appear when a tends to acrit

from the left.
Fig. 4 shows the paths described by the particles throughout the convergence process from the uniform starting configura-

tion with a ¼ 0:9; a ¼ 1:3 and a ¼ 5:08 (up from left to right), and from the delta starting configuration with a ¼ 0:85, a ¼ 1:05
and a ¼ 5:08 (down from left to right). For each path the large and medium points correspond to the final and initial configu-
rations, respectively, whereas the small points correspond to the intermediate steps (the delta starting position is confined
within a small cap and it cannot be seen). Note that the paths corresponding to the first pair of figures of each group look alike.
In fact, the values of a corresponding to each pair lead to the same minimum with different speed, and they correspond to ‘‘con-
tinuous” fragments of the curves in Fig. 3. There are few of such continuous fragments in the curve down in Fig. 3 because the
starting configuration is very extreme. In any case, Fig. 3 makes it clear that small variations in the coefficient a can imply strong
variations in the paths followed by the particles from both starting positions. So, in general, the loss of the stability of the des-
cent scheme when it is seen as Euler’s forward integration scheme occurs in general for extremely low values of a.

It is interesting to observe how the Forces Method works from a delta starting configuration. Fig. 5 shows, from left to
right and from above to below, the configurations for n step ¼ 0;3;8;19;32;37;99;8075 corresponding to the convergence
process associated to Fig. 4 (down to the right). The steps nstep ¼ 0 and nstep ¼ 8075 correspond to the starting configuration
and to the final configuration after the e-convergence ðe ¼ 10�7Þ has been attained, respectively. In each case, the scale has
been conveniently adjusted to make the visualization of the process easier. As can be observed, in the first steps the algo-
rithm constructs a small ring with all the particles. The diameter of that ring grows until it becomes comparable to the dis-
tance between two neighboring particles in the final configuration. From this moment, the ring leaves some particles in its



0 1 2 3 4 5 6
0

2

4

6

8

10

12
x 104

0 1 2 3 4 5 6
0

2

4

6

8

10

12
x 104

nu
m

be
r 

of
 s

te
ps

 to
 a

tta
in

 a
n 

er
ro

r 
of

10
−

7

critaa

Fig. 3. Evolution with a of the number of steps necessary to attain e-convergence ðe ¼ 10�7Þ from a uniform starting configuration (up) and from a delta
starting configuration (down).

Fig. 4. Paths described by the particles from a uniform starting configuration with a ¼ 0:9; a ¼ 1:3 and a ¼ 5:08 (top: from left to right) and from a delta
starting configuration with a ¼ 0:85; a ¼ 1:05 and a ¼ 5:08 (bottom: from left to right).
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interior. At step nstep ¼ 32, the ring has already left some particles, and a few steps later it has ‘‘evenly distributed” all the
particles on the sphere’s surface. Most of the remaining steps are spent in localizing a minimum accurately.

3.2.2. Experiment 2
This experiment complements the previous one and was designed to confirm that the value of acrit (that is, the value of the

coefficient a from which the descent scheme diverges) is strongly independent of the starting configuration. This has been
corroborated by all the tests that we have carried out, and it is perhaps the most relevant result for the Fekete point problem
that we have obtained.



Fig. 5. Convergence process associated to a delta starting configuration. The steps n step ¼ 0;3;8;19;32;37;99;8075 are displayed from left to right and
from top to bottom.
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Here, the algorithm runs again from the uniform and delta starting configurations used in Experiment 1, and different
values of a were considered in each case. Specifically, the chosen values were a ¼ 5:4; a ¼ 5:4275; a ¼ 5:43;
a ¼ 5:433; a ¼ 5:44; a ¼ 5:7 and a ¼ 8. The two diagrams in Fig. 6 (left) show the convergence curves corresponding to these
values of a from the uniform configuration (up) and from the delta configuration (down). For the first value a ¼ 5:4, the con-
vergence curve goes down in linear tendency until the precision limits are attained (we work in double precision). For the
next a values, it is still possible to reach the linear tendency, but this tendency is left at a certain step and finally the process
diverges. For higher values of a, the divergence process starts even before the linear tendency is reached. In the case corre-
sponding to the uniform starting configuration, the loss of convergence occurs for the values of wmax growing with a, whereas
with the delta starting configuration and in this particular case, this monotonicity is lost for a ¼ 5:4275; a ¼ 5:43 and
a ¼ 5:433, which can be explained by the fact that with a delta starting configuration even these small variations of a can
lead to different minima. In any case, there exist a short range of values of a for which the process goes from e-convergence
for any e to divergence, independently of the random starting position. On the spheres displayed in the figure, we have
Fig. 6. The divergence process from uniform starting configurations (up) and from delta starting configurations (down). In the diagrams on the left, the
values of a for each curve are, from bottom to up (the exceptions are indicated), a ¼ 5:4; a ¼ 5:4275; a ¼ 5:43; a ¼ 5:433; a ¼ 5:44; a ¼ 5:7 and a ¼ 8,
respectively. The spheres correspond to the cases a ¼ 5:7 (center) and a ¼ 8 (right).
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included the paths described by the particles in the cases a ¼ 5:7 (center) and a ¼ 8 (right) from the uniform starting con-
figuration (up) and from the delta starting configuration (down). The large points correspond to the starting position. As can
be observed, the divergence process corresponds to a bifurcation of both the trajectories and the convergence curves. For
high values of a, the process seems to lead to a sort of ‘‘rotation” of two similar alternating configurations with respect to
the same axis.

3.2.3. Experiment 3
In this experiment, an analysis was carried out on average for different random starting positions with N ¼ 87. The objec-

tive was to obtain information about the evolution with a of the average number of steps necessary to converge.
Fig. 7 summarizes the results of this test, in which 120,000 total runs of the algorithm were performed. These runs cor-

responded to 2000 uniform starting configurations (left) and 2000 delta starting configurations (right). For each one of these
starting configurations, we considered 30 different values of a. For each kind of starting configurations, the figure displays
the average number of steps necessary for e-convergence (e ¼ 10�7) computed from the 2000 total data for each value of
a (large points), and the average number of steps for e-convergence ðe ¼ 10�7Þ computed only from the data associated to
the same minimum energy value for each value of a (small points). We include the information corresponding to the best
five minima that we have found, whose energy values are �830.25191515, �830.25122722, �830.24870458,
�830.24727726 and�830.24727422, respectively. Moreover, we display the regression curves of the form �nstep ¼ c

ap obtained
for all the data and only for the data associated to each one of the five best minima. The included tables show the values of
the regression parameters, c; p, and the coefficient R2 for each one of the five analyzed minima, which are indexed by nmin,
and for all the data. The indices 1 and 2 in c; p;R2 denote uniform and delta starting configurations, respectively. The results
obtained indicate that there exists a strong independence between the average behavior of the algorithm and the method
used to generate the random initial configurations. In addition, the values obtained for the regression parameters clearly
confirm the intuitive result p ¼ 1.

Fig. 8 shows the sample distribution of the probability of obtaining the different minima of the problem from random
starting configurations. We specify the probability of obtaining the five best minima, which were determined from the
60,000 data corresponding to each kind of starting configurations (left and right, respectively). The separation between
the data corresponding to the fourth and fifth minima has been marked with a vertical segment because the difference of
their energies is invaluable. The figure also shows (in the small boxes) the probability of obtaining the five best minima, tak-
ing into account only the results corresponding to each a. These results confirm the independence of the probability distri-
bution of the minima, the procedure used for generating the random initial positions and also the value of a. Note that there
exist equilibrium configurations with extremely low probabilities. For instance, the seventh best minima obtained from uni-
form starting configurations appeared only once among the 120,000 total runs. The worst minima also have very small
probabilities.

3.2.4. Experiment 4
In this experiment, 60,000 total runs were performed for N ¼ 200. These runs corresponded to 2000 uniform starting

positions and 30 different values of a (from now on all the starting configurations are uniform except for the robustness
experiment performed for N ¼ 106 – see Section 3.4).

Fig. 9 (left) shows the evolution with a of the average number of steps necessary for e-convergence (e ¼ 10�7) for this
case. The corresponding interpolation curve is also included. The same figure (center) shows the sample probability distri-
bution of the minima that were obtained from the 60,000 total runs. Note that the appearance of the probability distribution
Fig. 7. Evolution with a of the average number of steps for e-convergence ðe ¼ 10�7Þ from uniform starting configurations (left) and delta starting
configurations (right). The average data corresponding to the best five minima and their interpolation curves are also included.



0 0.2 0.4 0.6 0.8 1
−830.26

−830.25

−830.24

−830.23

−830.22

−830.21

−830.2

−830.19

−830.18

probability

en
er

gy

0 0.2 0.4 0.6 0.8 1
−830.26

−830.25

−830.24

−830.23

−830.22

−830.21

−830.2

−830.19

−830.18

probability

en
er

gy

0 1 2 3 4 5 6
0 %

10%

20%

30%

40%

50%

a
0 1 2 3 4 5 6

0%

10%

20%

30%

40%

50%

a8.04%

13.1% 42.2%

6.62%

11.6%
12.3% 42.7%

6.47%

11.8%

8.65%

Fig. 8. Sample distribution of the probability of obtaining the different minima of the case N ¼ 87 from uniform starting configurations (left) and from delta
starting configurations (right).

Fig. 9. Evolution with a of the average cost, sample probability distribution of the minima and divergence for the case N ¼ 200. In the diagram on the right,
the values of a for each curve are, from bottom to up, a ¼ 8:25; a ¼ 8:27; a ¼ 8:28; a ¼ 8:3; a ¼ 8:35; a ¼ 8:8 and a ¼ 12, respectively.
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corresponds to a continuous random variable rather than a discrete one, whereas the probability distribution for the case
N ¼ 87 has the typical aspect of a discrete random variable distribution. Fig. 9 (right) also shows the divergence process
and includes the curves corresponding to a ¼ 8:25; a ¼ 8:27; a ¼ 8:28; a ¼ 8:3; a ¼ 8:35; a ¼ 8:8 and a ¼ 12.

3.2.5. Experiment 5
The previous experiments suggest that if the scheme x̂kþ1 ¼ xk þ a min16i<j6Nfjxk

i � xk
j jgwk; xkþ1

i ¼ x̂kþ1
i

jx̂kþ1
i
j ; i ¼ 1; . . . ;N, is

adopted as the descent algorithm and the coefficient a is kept constant throughout the optimization process, then the aver-
age number of steps necessary for e-convergence is inversely proportional to a until a certain value acrit, beyond which the
scheme diverges. Moreover, all this process is practically independent of the initial configuration. Also taking into account
that the probability distribution of the minima obtained from random starting configurations is independent of a, it is clear
that the optimum efficiency of the algorithm is obtained when for each N a value a� close to acrit from the left is chosen for a.

The objective of this experiment was to determine the way the coefficient acrit varies with N. We obtained an accurate
estimation of acrit for each N ¼ 10;20; . . . ;100;200; . . . ;1000;1250; . . . ;2000;2500;3000 just by applying the bisection meth-
od after determining by inspection a value of a that leads to convergence, and another that leads to divergence from a given
(any) starting configuration. Fig. 10 shows the results of the experiment and the interpolation of the obtained data. Taking
into account this information, we establish the formula a� ¼ 0:545

ffiffiffiffi
N
p

for the logarithmic energy on the 2-sphere.
In a small complementary experiment, we computed the value of a crit corresponding to 10 different starting positions for

each N ¼ 50;100;200. In all the cases we used the bisection method until attaining an error smaller than 10�4acrit. For
N ¼ 50, the mean of the 10 obtained values was 4.084 and the corresponding standard deviation was 0.0079, which gives
a quotient of about 0.002. For N ¼ 100;200, the mean and the standard deviation were 5.757, 0.065 and 8.269, 0.075, respec-
tively. In both cases, the quotient is around 0.01. According to the curves displayed in Fig. 10, a� ’ 0:9acrit for N 6 106. Our
experience indicates that this criterion is sufficiently conservative. In fact, the formula a� ¼ 0:545

ffiffiffiffi
N
p

has been used in about
6 � 107 runs of the algorithm for different N from N ¼ 87 to N ¼ 106 in the case of the logarithmic energy on the 2-sphere (see
Section 3.4 and [2]). In particular, more than 3 � 107 runs were performed for N ¼ 500 and more than 107 runs were carried
out for N ¼ 600. The Forces Method never diverged, which can be understood as a sort of ‘‘convergence proof” for our
algorithm.



Fig. 10. Evolution with N of acrit and a� .
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3.3. The cost of a local minimum

It is clear that the cost at each step of the Forces Method is always the same, and when the logarithmic energy is consid-

ered it essentially corresponds to the computation of the N
2

� �
vectors xi�xj

jxi�xj j2
;1 6 i < j 6 N, which in cartesian coordinates

requires only elementary operations. Hence, the computational cost of the identification of a local minimum depends only
on the number of steps necessary to converge.

We introduced in Section 3.1 the random variables X, the number of steps for nr-convergence in a run, and Y, the number
of steps for e-convergence in a run. For the statistical analysis of these random variables, we used the sample data provided
by nsp ¼ 5000 runs of the Forces Method for each N ¼ 500;1000; . . . ;3000 and nsp ¼ 1000 runs for each N ¼ 4000;5000. The
results corresponding to N ¼ 4000;5000 were used to confirm the tendencies given by the rest of the data. In all the runs the
e-convergence with e ¼ 10�8 was attained.

The average values lX and lY are the main parameters for the analysis of the cost. In Fig. 11, the way the sample means
�x; �y stabilize with nsp can be observed. Specifically, we show the evolution with nsp of the sample means associated to nr-con-
vergence (left) and to e-convergence for e ¼ 10�6 (center), and e ¼ 10�8 (right) for all the considered N.

Fig. 12 (left) shows the average number of steps necessary to attain nr-convergence and e-convergence for
e ¼ 5 � 10�5;2 � 10�5;10�5; . . . ;10�8 obtained from the above-described sample data. We also display the regression curves
of the form l ¼ cNp obtained from the 5000 data corresponding to each N ¼ 500;1000; . . . ;3000 (big points). The table
on the right contains the regression data, c; p;R2, of these curves and the intersection point N? of the non-return average cost
curve (thick curve) and each e-convergence average cost curve. In any case, it can be assumed that the choice e ¼ 10�8 guar-
antees that the information contained in Fig. 12 about the nr-convergence is reliable (in [2] we show that only a small frac-
tion of the runs are not in linear tendency when the e-convergence with e ¼ 10�8 is attained).

The curves of e-convergence in Fig. 12 are useful in practice to estimate calculation times, but from a more conceptual
point of view the information about the nr-convergence is crucial; the intrinsic average complexity of obtaining an approx-
imate local minimum, which is independent of e, is approximately OðN2:77Þ. It must be taken into account that entering into
the neighborhood of a local minimum has been identified with the bottleneck of the Fekete problem; see, for instance, [3,10].
We must also consider that the algorithms with a high convergence ratio, whose prototype is Newton’s algorithm, diverge in
general if the initial estimation is not good enough. The presented results imply that the average computational cost of the
identification of an approximate local minimum is asymptotically negligible in comparison with the application of a qua-
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Fig. 11. Evolution with